1.1 Connected Spaces

Dfn 1.1 (i) a topological space X is *connected* if it cannot be written as a disjoint union of open subsets X=AUB. (ii) X is *disconnected* if X is not connected.

Rem: X is connected \Leftrightarrow the only clopen Subsets of X are ϕ and X.

Thm 1.3: IR with Euclidean topology is connected.

Thm 1.4: $f: X \Rightarrow Y$ continuous, X connected, then f(X) connected.

Cor 1.5: Connectedness is a topological invariant.

Prop 1.6 : A connected, and $A \subseteq B \subseteq \overline{A}$, then B is connected.

Cor 1.7: Every honempty interval J S IR is connected.

1.2 Paths and Path Components TTo (X).

Dfn 1.8: A path in a topological space X is a cont. Map $I = [0,1] \rightarrow X$. Its initial point is $\alpha(0) \in X$ and its terminal point is $\alpha(1) \in X$

a(0) a(1)

Fx 1.9:X⊆IRⁿ is convex if ∀xo,スi∈X, [xo,xi]:={(1-t)xo+txi : 0≤t≤i} ⊂ X

Dfn 1.10: X is path-connected if $\forall x_0, x_1 \in X$, 3 a path $\alpha: I \rightarrow X$ with $\alpha(0) = x_0$ to $\alpha(1) = x_1$.

Thm 1.12: path - connected \Rightarrow connected.

Thm 1.14: n-72, IR" ¥ IR

Thm 1.16: any connected, open subset $\Omega \subseteq \mathbb{R}^n$ is connected.

Thm 1.17: $f: X \rightarrow Y$ cont., X path - connected. Then f(X)is path - connected.

Cor 1.18: Path - connectedness is a topological invariant.

Prop 1.19: For any equivalence relation on a path-Connected space, Y = X/v is also path connected.

Dfn 1.20: path - relation: $\forall x, y \in X$, $x \sim y \Leftrightarrow \exists path \alpha : I \rightarrow X \quad s.t. \quad \alpha(0) = x \quad , \alpha(1) = y.$ Dfn 1.21: Constant path: a: I→X; d:t ↦ x

Dfn 1.22: reverse of path: $-\alpha: I \rightarrow X$; $t \mapsto \alpha(1-t)$

Dfn 1.23 : Concatenation of paths: $\alpha', \beta: I \rightarrow X$, With $\alpha(I) = \beta(0) = X$:

 $\alpha(\circ\beta: \mathbb{I} \to X; t \mapsto \begin{cases} \alpha(2t) & 0 \leq t \leq V_2 \\ \beta(2t-1) & V_2 \leq t \leq 1 \end{cases}$

Prop 1.24: path relation is an equivalence relation on X.

Dfn 1.25: (i) path (omponents) of X are the equivalence classes of the path relation: $[x] = \{ \{ \} \in Y : \{ \} \sim x \} \}$ (ii) set of path components: $\pi_0(X) := X/\sim$ The function $X \to \pi_0(X), x \mapsto [x]$ is surjective. WARNING: bijection $\pi_0(X) \to \pi_0(Y) \not\Rightarrow X \cong Y$.

Rem: a cont. $f: X \rightarrow Y$ induces a function $f_*: \pi_o(X) \rightarrow \pi_o(Y); [x] \mapsto [f(x)].$

Covariant: (9 of) = 9 + of +.

Ex 1.28: X path connected $(\Rightarrow \Pi_0(X) = trivial.$

2. Homotopy Theory

Dfn 2.1: Homotopy between maps $f,g: X \rightarrow Y$ is a map $h: X \times I \rightarrow Y$ such that $h(x,o) = f(x), \quad h(x, 1) = g(x)$ We say then that f and g are homotopic, denoted $h: f \cong g: X \rightarrow Y.$

Y[×]:= Space of maps x→Y

Rem : (i) \forall t \in I, 3 map $h_t: X \rightarrow Y$; $x \mapsto h(x, t)$ (ii) \forall $x \in X$, 3 path $f(x) \rightarrow g(x) = h(x, t)$.

Prop 2.3: homotopy defines an equivalence relation on Y^y.

Constant homotopy: $h: f \cong f: X \Rightarrow Y; (x,t) \mapsto f(x)$ reverse homotopy: $h: f \cong g: x \Rightarrow Y$, then $-h: g \cong f: X \Rightarrow Y; (x,t) \mapsto h(x, i-t)$ (oncatenation: $h_1: f_1 \supseteq f_2: x \Rightarrow Y, h_2: f_2 \supseteq f_3: x \Rightarrow Y,$ then $h_1 \circ h_2: X \times I \Rightarrow Y;$ $(x,t) \mapsto \begin{cases} h_1(x, 2t) & 0 \le t \le 1_2 \\ h_2(x, 2t-1) & Y_2 \le t \le 1 \end{cases}$

Prop 2.4: $f,g: X \rightarrow Y$, $Y \subseteq \mathbb{R}^n$ convex, then $f \cong g$ via h: $X \times I \rightarrow Y$; $(x,t) \mapsto (1-t)f(x) + tg(x)$.

Dfn 2.6: X,Y are homotopy equivalent if 3 maps f: X → Y, g: Y → X and homotopies h: gf 2 1x: X → X, k: fg 2 1y: Y → Y we say f and g are inverse homotopy equivalences

Rem: homotopy equivalence of spaces is an equiv. relation.

Dfn 2.7: X contractible := homotopy equivalent to a point.

Rem: $f,g: X \rightarrow Y$, Y contractible $\Rightarrow f \simeq g$.

Prop 2.11: Homeomorphic spaces are homotopy equivalent.

Rem: Compactness is ignored by homotopy equivalence e.g. non-compact D^a/{o} ≥ Sⁿ⁻¹

Prop 2.12: $f: X \rightarrow Y$ hom equive induces bijection $f_{*}: \pi_{o}(X) \rightarrow \pi_{o}(Y); [x] \mapsto [f(x)].$

Rem: X path - connected, N not, then X7 Y Ex 2.13: X = Eo}, Y = Eo,13 with discrete topology. Rem: two finite spaces with discrete topology are hom equiv iff they have the same # of elements.

Dfn 2.14; (i) retraction of X onto subspace Y⊆X is
a map r: X→Y s.t r(y) = y Y y ∈ Y.
Y is called a retract of X.
(ii) deformation retraction of X onto Y is a map h: X×I→X s.t.
h(x,o) ∈ Y, h(x,1) = X Y × ∈ X, h(y,o) = y Y y ∈ Y.
Y is called a deformation retract of X.

Ex 2.17: $X \neq \emptyset$, trivial topology $T = \{ \emptyset, X \}$. Then any function $Y \rightarrow X$ is continuous. Then for $x_0 \in X$, $\{x_0\}$ is a deformation retract via

 $h: X \times I \to X \quad ; \quad (x, t) \mapsto \begin{cases} x \circ & t = 0 \\ x & 0 < t \leq 1 \end{cases}$

Dfn 2.18: $X \subseteq \mathbb{R}^n$ is Star-Shaped at $x \in X$ if $\forall y \in X$, $[x,y] = \{(1-t)x + ty : 0 \leq t \leq 1\} \subseteq \mathbb{R}^n$ is contained in X

Rem : convex if star-shaped at all points.

Prop 2.20: X ⊆ Rⁿ star-shaped at xo ∈ X, then ₹xo3 ⊆ X is a deformation retract via h: X × I → X; (x,t) → xo + t(x-xo)

Dfn 2.22: cone on $X \neq \phi$ is the quotient space obtained from $X \times I$ by collapsing $X \times \{0\}$ to a point:

$$CX = \frac{X \times I}{(X \times i0!)}, = \frac{X \times I}{\nu}, (x, 0) \nu(y, 0).$$

$$X = X \times i! \subseteq CX \text{ is called the cone base.}$$

path: $\alpha : I \rightarrow CX ; t \mapsto [\pi, st], \alpha(0) = c, \alpha(1) = [x, t].$

Prop 2.23: (i) {c} ⊂ CX is a deformation retract of CX, so CX is contractible. (ii) f:X→Y is hom to a constant map g:X→Y, XHYo

iff $\exists F: CX \rightarrow Y$ sit $F[x_1] = f(x)$, $F[x_10] = y_0$.

Prop 2.25: extend γ on X to a relation R on CX by $(\chi,s)R(y,t) \Leftrightarrow (\chi,s)=(y,t) \text{ or } s=t=0 \text{ or } s=t=1 \text{ and } \chi\gamma$ Then X/R is a deform retract of $Y = (CX \setminus \{c\})/R$, and Y is hom equiv. to X/γ .

One point union: for xo ∈ X, yo ∈ Y, define XVY := (XUY)/~, xo ~yo.

8 = S'VS'

$$\frac{\partial \mathbf{I}^2 / \mathbf{\nu} \rightarrow \mathbf{8}}{\left[\left[\mathbf{\lambda}, \mathbf{o} \right] = \left[\mathbf{\lambda}, \mathbf{i} \right] \mapsto \mathbf{e}^{\mathbf{z} \pi \mathbf{i} \mathbf{y}} \text{ in } \mathbf{1}^{\mathbf{s} \mathbf{t}} \mathbf{S}^{\mathbf{t}} \right]}{\left[\left[\mathbf{o}, \mathbf{y} \right] = \left[\mathbf{1}, \mathbf{y} \right] \mapsto \mathbf{e}^{\mathbf{z} \pi \mathbf{i} \mathbf{y}} \text{ in } \mathbf{2}^{nd} \mathbf{S}^{\mathbf{t}} \right]}$$

(2.1)

(1,0)

3.2 The Cylinder Cylinder $I \times S^1 = \frac{J^2}{2},$ $(\chi_1 \circ) \sim (\chi_1)$

S' is deform. ret. of IXS'

3.3. Möbius Band

Contains circle as def. ret. $S' \hookrightarrow M \neq [y] \mapsto [y_2, y]$. (ontains Θ as def. ret., $\Theta \hookrightarrow M \neq \Theta = \frac{\partial I^3}{\sqrt{2}} \xrightarrow{2} M \setminus \{[y_2, y_2]\}$. punctured $M \cong \{B\}$.

3.4. The Torus

 $\frac{2^{1}}{2} \geq 8$

3.5 The klein Bottle

8 deformation retract

3.6 Projective Plane $|\mathbb{R}|\mathbb{P}^2 = \frac{1^2}{2}, (x,0) \cdot (1-x_1), (0,y) \rightarrow (1,1-y)$

⁹¹²/~ ½ S'

4. Cutting and Pasting Paths

Dfn 4.1. f,g:A→X maps, B≤A a subspace s.t f(b) = g(b) €X (b∈B) Then a homotopy rel B is a homotopy h:f≥g:A→X Such that h(b,t) = f(b) = g(b) €X

Idea: homotopy remains constant on B.

Ex 4.2: homotopy rel $\{0,1\}$ of two paths $\alpha_0, \alpha_1 : \mathbb{I} \rightarrow X$ with the same endpoints: $\alpha_0(0) = \alpha_1(0), \ \alpha_0(1) = \alpha_1(1)$, is a collection of paths $h_{\pm} : \mathbb{I} \rightarrow X$ ($0 \le t \le 1$) with same endpoints.

 $h_{\ell}(0) = \alpha_{0}(0) = \alpha_{1}(0), \quad h_{\ell}(1) = \alpha_{0}(1) = \alpha_{1}(1)$

S.t. ho = d o, hi=di, and $f: I \times I \rightarrow X, (s,t) \mapsto h_t(s)$ is (ont.

Dfn 4.3: Concatenation of paths at $\lambda \in (0,1)$. Take $\alpha_{1}\beta: I \rightarrow X \text{ s.t } \alpha(1) = \beta(0) \in X$. $\alpha_{\lambda}\circ \beta: I \rightarrow X; S \mapsto \begin{cases} \alpha(\frac{s}{\lambda}) & 0 \leq S \leq \lambda \\ \beta(\frac{S-\lambda}{1-\lambda}) & \lambda \leq S \leq 1 \end{cases}$ $\alpha(\cdot_{\lambda}\beta(0) = \alpha(0), \alpha(\cdot_{\lambda}\beta(\lambda) = \alpha(1) = \beta(0), \alpha(\cdot_{\lambda}\beta(1) = \beta(1)).$

Prop 4.5: rel {o,l} homotopy class of a • 2 B: I→X is independent of 2

Dfn 4.6 + Prop 4.7: Can extend Concatenation to finitely Many paths, now λ is a partition of I, and Concatenated path is independent of λ .

Ex 4.8: $a_1\beta,\gamma: I \rightarrow X$, $a(1) = \beta(0)$, $\beta(1) = \gamma(0)$, $0 \le \lambda \le \mu \le 1$: $a_1\beta a_{\mu}\gamma: I \rightarrow X$; $S \mapsto \begin{cases} a(\frac{S}{\lambda}) & 0 \le S \le \lambda \\ \beta(\frac{S-\lambda}{M-\lambda}) & \lambda \le S \le M \\ \gamma(\frac{S-M}{1-M}) & M \le S \le 1 \end{cases}$ Rem: $a_1 - a_1 : S \mapsto \begin{cases} a(2S) & 0 \le S \le \frac{1}{2} \\ -a(2S-1) & \frac{1}{2} \le S \le 1 \end{cases}$ $: S \mapsto \begin{cases} a(2S) & 0 \le S \le \frac{1}{2} \\ a(2S) & 0 \le S \le \frac{1}{2} \end{cases}$

so $\alpha \cdot -\alpha \ge 1$ via homotopy: $\alpha(o) = \alpha(1) = \lambda_0$ $h : (s,t) \mapsto \begin{cases} \alpha(2st) & 0 \le \frac{1}{2} \\ \alpha(2t(s-1)) & \frac{1}{2} \le s \le 1 \end{cases}$

 $h(s_1 o) = \alpha(o) = x_0$ $h(s_1 l) = \alpha - \alpha$

5. The Fundamental Group $\pi_1(X)$

Dfn 5.1 (i) A based space (X, xo) is a space w/ a disting. base point 20 EX (ii) A based map $f:(x,x_0) \rightarrow (Y,y_0)$ is a map $f:x \rightarrow Y$ such that f(x_o) = y_o (iii) A based homotopy h:f≥g: (x,xo) → (Y,yo) is a homotopy $h: f \supseteq g: X \rightarrow Y$ such that $h(x_0,t) = y_0$. Prop 5.2. Based homot forms equiv. rel on all based maps Dfn 5.3: based loop is based map $\omega:(s', 1) \rightarrow (x, x_0)$, where $l:=(1,0) \in S'$ Equivalently... Since $I / \{0 \sim i\} = S'$; [t] \mapsto (cos(2\pit), sin(2\pit)). based loop = closed path $\alpha: I \rightarrow X$, $\alpha(o) = \alpha(1) = X_0$. $\alpha(t) = \omega(\cos(2\pi t), \sin(2\pi t))$ $\alpha: \mathbf{I} \xrightarrow{\mathsf{proj}} \mathbf{S'} \xrightarrow{\omega} \mathbf{X}$ Rem: d, B: I→X are homotopic iff a(1), B(1) are in the same path component of X. Dfn 5.4 : Fundamental group $\Pi_1(X, x_0)$ at a base point xo EX is the set of rel 20,13 homotopy classes [a] of closed paths $a: I \rightarrow X$ s.t $a(o) = a(1) = x_0$. • multipl: cation: ([α], [β]) → [α][β]:= [α•β] 👅 inverses : [a] - I = [-a] 🤍 identity : [ezo] = (onstant path Thm 5.5: $\pi_1(x,x_0)$ is a group Rem 5.6: \mathbb{R}^n S' $\underset{(n\nu)^2}{S}$ $\mathbb{R}\mathbb{P}^n$ $S' \times S'$ $\{l\}$ \mathbb{Z} $\{l\}$ \mathbb{Z}_2 $\mathbb{Z} \oplus \mathbb{Z}$ π,(x) | ξι} Rem: loops in R^h are contractible : h(s,t) = (1-t) Y(s) TI, (IRIP") is generated by square root loop: (cos2πt, sin2πt) → [cosπt, sinπt, 0,0,...]

TI,(s'xs') gen by x i (x,1) and y i (1,y)

Dfn 5.7: (X, x_0) is simply - connected if X is path -Connected and $\pi_1(X, x_0) = 1$

e.g. S' path-connected but not simply -connected. Contractible space is simply -(onnected. (gf)* = 9*f* Prop 5.9 (i) map f:X → Y induces Covariant group homo $f_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, f(x_0)); [a] \mapsto [f(a]].$

Dfn 5.10 (χ, χ_0) . $f: \chi \rightarrow Y$ is a homotopy equivalence rel $\{\chi_0\}$ if $\exists g: Y \rightarrow \chi$ s.t $g(f(\chi_0)) = \chi_0$, a homotopy rel $\{\chi_0\}$ h: $gf \cong I \chi : \chi \rightarrow \chi$, $h(\chi_0, \chi) = \chi_0$ and a homotopy rel $\{f(\chi_0)\}$ k: $fg \cong I \chi : \chi \rightarrow \chi$, $k(f(\chi_0), \chi) = f(\chi_0)$.

Prop 5.11: $f_1 \cong f_2: X \rightarrow Y$, then $(f_1)_{*} = (f_2)_{*}$ (ii) $f: X \rightarrow Y$ a homo equive rel $\{x_0\}_{3}$, then f_{*} an iso With inverse $(f_{*})^{-1} = g_{*}$.

Ex 5.12: def retract X > 2 gives a how equiv rel Z. inclusion $i: Z \rightarrow X$ hom. equiv. rel zo $\forall z \in Z$ \Rightarrow iso $i_{\psi}: \pi_1(z_1z_0) \rightarrow \pi_1(X_1z_0).$

Prop 5.13 (i) path $\Upsilon: I \rightarrow X$ determines an iso of groups. $\Upsilon_{\#}: \pi_{i}(X, \Upsilon(0)) \rightarrow \pi_{i}(X, \Upsilon(1)); [\alpha] \mapsto [-\Upsilon \cdot \alpha \cdot \Upsilon]$

with inverse $(Y_{\#})^{-1} = (-Y)_{\#}$ (ii) $Y_{\#}^{\#}$ depends only on rel $\{0,1\}$ homotopy class of Y. (iii) $Y = Y_1 \cdot Y_2$, then $Y_{\#}^{\#} = (Y_2)_{\#} (Y_1)_{\#}$.

Ex 5.14: closed path $\gamma: I \rightarrow X$, $\gamma(o) = \gamma(1) = x_0 \in X$, determines conjugation automorphism: $\gamma_{\#}: \pi_1(X, x_0) \rightarrow \pi_1(X, x_0); [\alpha] \mapsto [-\gamma \circ \alpha \cdot \gamma] = [\gamma]^{-1}[\alpha][\gamma].$

Prop 5.15 $G_1, F: X \rightarrow Y$, $H: F \cong G_1: X, Y$, $x_0 \in X$, define path $\gamma: I \rightarrow Y$, $t \mapsto H(x_0, t)$

From $\Upsilon(0) = F(\chi_0)$ to $\Upsilon(1) = G(\chi_0)$, so we define an iso $\Upsilon_{\#} : \pi_1(\Upsilon, F(\chi_0)) \rightarrow \pi_1(\Upsilon, G(\chi_0))$

Then the induced homomorphisms $F_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, F(x_0)), \quad G_{1*}: \pi_1(X, x_0) \rightarrow \pi_1(Y, G_1(x_0)),$ are such that $G_{1*} = Y_{2*}F_*$

Thm 5.6: f:X→Y a hom. equiv, then f_{*}: π₁(x, x₀) → π₁(Y, f(x₀)) is an isomorphism of groups for any x₀ ∈ X.

6. Classification of Compact Surfaces

Dfn G.1 (i) a Hausdorff topological Space M is an *n-dimensional topological manifold* if it admits a Countable open cover $\{u_{\lambda}\}_{\lambda \in \Lambda}$, each $u_{\lambda} \cong \mathbb{R}^{n}$ (ii) 2D manifold is called a surface.

Dfn 6.3: a surface M is orientable if there is no subspace N c M which is homeo to Möbius band.

Orientable: R², S², S[']×S['] non orientable: Klein bottle, RIP^{*})

Rem 6.5: (M, ∂ M) surface with boundary : M ∂ M is a surface (e.g. (D^2 , S^1)).

Dfn 6.6: $g_{7/0} \in \mathbb{N}$. The sphere with g handles, H(g), or the g-holed torus, is the orientable surface

Dfn 6.8: g_{771} , $g \in \mathbb{N}$. The sphere with g cross-caps M(g) is the nonvientable surface obtained by taking S² and punching out G copies of D² and replacing each hole with a copy of the Möbius band

Thm 6.9 (Classification Thm for Compact Surfaces)

- (1) Every connected, compact, orientable surface M is homeomorphic to H(g) for some g70.
- (2) Every connected, compact, nonorientable surface M is homeomorphic to N(g) for some go,1.
- ⁽³⁾ Connected, compact surfaces M, M' are homeomorphic iff 3 a group isomorphism $\pi_1(M) \cong \pi_1(N')$.

7. $\Pi_1(S^n) = \{1\}, n \gg 2$

Lem 7.2: X compact metric space, $\{U_n\}$ an open cover. Then $3 \ 8 > 0$, the Lebesgue number of the cover, s.t $\forall x \in X$, B(x, 8) lies entirely inside some single U_A .

Prop 7.3 (i) Every map d: [so, si] → IRⁿ is homotopic rel {so, si} to a linear map

 $\beta : [s_0, s_1] \rightarrow \mathbb{R}^n; S \mapsto \frac{(s_1 - s)\alpha(s_0) + (s - s_0)\alpha(s_1)}{s_1 - s_0}$

With image $\beta([s_0,s_1]) = [\alpha(s_0), \alpha(s_1)] \subset \mathbb{R}^n$

(ii) n > 2, any path $\sigma: I \rightarrow S^n$ is homotopic rel $\{0, 1\}$ to a path $\beta: I \rightarrow S^n$ which is not onto.

Thm 7.4: π1(sn) = {1} , n7,2.

Cor 7.5: η73, Πι (R "120}) =1.

$S' = \{ z \in C : |z| = 1 \}$

Prop 8.1. $\forall N \in \mathbb{Z}$, let $\omega_N : S^1 \rightarrow S^1$; $z \mapsto z^N$ be the map winding the circle around itself N times in the anticlockwise direction, with $\omega_N(1) = 1$. Then the function

 $\mathcal{I} \rightarrow \pi_{i}(s')$; $N \mapsto [W_{N}]$

is a homomorphism of groups: [wn] = [wn]^N

Rem: $p: \mathbb{R} \to S^{1}$; $\chi \mapsto e^{2\pi i \chi}$ has the following properties: (1) $\forall \chi \in \mathbb{R}$, $U = (\chi, \chi + 1) \in \mathbb{R}$ is such that p restricts to a homeory $p| : U \to p(U)$; $u \mapsto p(U)$ with $p(U) = s^{1} \setminus e^{2\pi i \chi}$ (2) p is onto, with $y = p(\chi)$, $\Rightarrow p^{-1}(y) = \{\chi + n \mid n \in 7Z\} \subset \mathbb{R}$ Dfn $\mathbb{B} \cdot 2^{2} Lift$ of a map $\alpha : \mathbb{E} t_{0}, t_{1}] \to S^{1}$ is a map $\Theta : [t_{0}, t_{1}] \to \mathbb{R}$ such that $\alpha(t) = e^{2\pi i \Theta(t)} \in S^{1}$ $\alpha = p \Theta : [t_{0}, t_{1}] \to S^{1}$. With $\Theta(t_{0}) = \Theta_{0} \in \mathbb{R}$ the initial angle and $\Theta(t_{1}) = \Theta_{1} \in \mathbb{R}$ the terminal angle. Angle map $: \Theta = \begin{bmatrix} \mathbb{R} \\ |_{B} \end{bmatrix}$

Commutative diagram

Prop 8.3: $d: [t_0, t_1] \rightarrow 5^1$, $\theta_0 \in \mathbb{R}$ s.t $d(t_0) = e^{2\pi i \theta_0}$, then **3!** angle map $\theta: [t_0, t_1] \rightarrow \mathbb{R}$ for α with initial angle $\theta(t_0) = \theta_0 \in \mathbb{R}$.

[10,41]-

Rem: angle maps are unique up to initial angle. ³ possible initial angles differ by 7L.

Dfn 8.4. (i) The degree of a closed path $\alpha: I \rightarrow S^1$ is the difference between the terminal and initial angles in any angle map $Q: I = [0,1] \rightarrow \mathbb{R}$ for a

degree (a) = 0(1) - 0(0) E7L

Using $\alpha(0) = \alpha(1)$ to ensure this is an integer.

(ii) degree of a loop $\omega: S' \rightarrow S'$ is degree $(\omega) = degree(\alpha) \in 7L$ with α the closed path $\alpha: I \rightarrow S'$, $t \mapsto \omega(e^{2\pi i t})$.

Ex 8.5:
$$\alpha_N : I \rightarrow S'$$
, $t \mapsto e^{2\pi i N t}$
 $\Theta_N : I \rightarrow R$, $t \mapsto Nt$
degree (α_N) = N

antipodal map:
$$\omega: S' \rightarrow S'; z \mapsto -z$$

 $d: I \rightarrow S'; t \mapsto e^{2\pi i (t+\gamma_z)}$
 $Q: I \rightarrow R; t \mapsto t + 1/z$

Prop 8.7: (i)
$$\gamma: \alpha \simeq \beta: [t_0, t_1] \rightarrow S'$$
. Given Θ_0 for α ,
3! homotopy $\Psi: \Theta \simeq \phi: [t_0, t_1] \rightarrow \mathbb{R}$ such that
 $\gamma(s,t) = e^{2\pi i \Psi(s,t)} \in S', \quad \Psi(t_0, 0) = \Theta_0$
with $\Theta: [t_0, t_1] \rightarrow \mathbb{R}; \ s \mapsto \Psi(s, 0),$
 $\phi: [t_0, t_1] \rightarrow \mathbb{R}; \ s \mapsto \psi(s, 1)$
angle maps for $\alpha, \beta: \ \alpha(s) = e^{2\pi i \Theta(s)}, \ \beta(s) = e^{2\pi i \phi(s)}.$

(ii) If α(to) = β(to), α(to) = β(to) and γ: α ≥ β is a homotopy rel 2to, ti}, then ψ is a homotopy rel 2to, to).

Thm 8.8: $\Pi_1(s') \cong 7\mathcal{L}$, via group isomorphisms $7\mathcal{L} \to \Pi_1(s')$; $N \mapsto \omega_N$ degree: $\Pi_1(s') \to 7\mathcal{L}$; $\omega \mapsto degree(\omega)$

Note: $\alpha, \beta: I \rightarrow S'$ closed paths, θ, ϕ their angle maps, $\theta(0) = \phi(0) = 0$. Then $\alpha \cdot \beta: I \rightarrow S'$ has angle map $\lambda: I \rightarrow IR$; $t \mapsto \begin{cases} \theta(2t) & 0 \le t \le V_2 \\ \theta(1) + \phi(2t-1) & V_2 \le t \le I \end{cases}$

Also, $deg(\alpha) = O(1)$, $deg(\beta) = O(1)$, so that $deg(\alpha \cdot \beta) = deg(\alpha) + deg(\beta)$.

Rem 8.11: (i) two loops are homotopic iff deg(w) = deg(w'). (ii) if a loop w: s' \rightarrow s' extends to a map $\delta w : D^2 \rightarrow S'$, then deg(w) = 0.

Dfn 8.13: The Winding Number around 0, $W(a) \in \mathbb{Z}$, of a closed path $\alpha: \mathbf{I} \to \mathbb{C} \setminus \{0\}$ ($\alpha(0) = \alpha(1)$)

is defined to be the degree of the loop

 $\omega : s' \rightarrow s'; e^{i\pi it} \mapsto \frac{\alpha(t)}{(\alpha(t))}$

that is, $w(\alpha) = deg(w: s' \rightarrow s') = \Theta(1) - \Theta(0)$ for any angle map $\Theta: I \rightarrow IR$ such that ario(n)

$$\alpha(t) = |\alpha(t)| e^{2\pi i \Theta(t)} \in \mathbb{C} \setminus \{0\}.$$

Dfn 9.1: $\mathbb{R}[P^n = S^n/\sim, v \land w \Leftrightarrow v = \pm w \in S^n$. p: v \mapsto [v], the natural projection, $p^{-1}([x]) = \{x, -x\}$.

Ex 9.3: $\mathbb{R}\mathbb{P}^2 \cong (x,o) \sim (1-x,1)$ (a,y) $\sim (1,1-y)$

Rem 9.2: $\mathbb{R}\mathbb{P}^{\prime} \cong S^{\prime} \Rightarrow \pi_{1}(\mathbb{R}\mathbb{P}^{\prime}) = \pi_{1}(s^{\prime}) = \mathbb{Z}.$

Rem: IRIPⁿ is compact and connected.

Dfn 9.5: homogeneous coordinates: $[x_0, ..., x_{n+1}] \in \mathbb{R}\mathbb{P}^n$ projection: $S^n \to \mathbb{R}\mathbb{P}^n$; $x \mapsto [x]$.

Dfn 9.6: The square root loop: in RPⁿ $\sigma: s' \rightarrow RP^{n}; \frac{2}{2} = \cos(2\pi t) + isin(2\pi t)$ $\mapsto J = C (os(2\pi t), sin(2\pi t)]$

 $7L_2 = \{-1, +1\}.$

Prop 9.7 : (i) $n \gg 1$, the square root loop $\sigma: S' \rightarrow IRIP'$ is a homeomorphism, so $\pi_1(IRP') = \pi_1(S') = 7L$. (ii) The square of the square root $[\sigma] \in \pi_1(IRIP^n)$ is $[\sigma]^2 : [qp]$, With $p: S' \rightarrow IRIP'$ the projection $v \mapsto [v]$, and $q: IRIP' \rightarrow IRIP^n$; $[z_1, z_2] \mapsto [z_1, z_2, o, o, ..., o]$. the inclusion

(iii) For $n_{7}2$, $[\sigma]^{2} = 1$, and 3 group homomorphism $[\sigma]: 7L_{2} \rightarrow \pi_{1}(\mathbb{RP}^{n}); -1 \mapsto [\sigma].$

Dfn 9.8: path-connected UC RIPⁿ is *small* if $p^{-1}(U) \subset S^n$ has 2 path-components: U+, U-, and the restrictions $p_+ = p |: U_+ \rightarrow U$, $p_- = p |: U_- \rightarrow U$

are homeomorphisms

Dfn Q.10: A lift of a map $\alpha : [t_0, t_1] \rightarrow \mathbb{R}\mathbb{IP}^n$ is a map $\theta : [t_0, t_1] \rightarrow S^n$ such that $\alpha(t) = p(\theta(t)) \in \mathbb{R}\mathbb{IP}^n$ $f_1 = \frac{\varphi}{\varphi} = \frac{\varphi}{\varphi} = \frac{\varphi}{\varphi}$ $[t_0, t_1] \xrightarrow{\alpha} \mathbb{R}\mathbb{IP}^n$ If α is closed, $p\theta(0) = \alpha(0) = \alpha(1) = p\theta(1) \in S$, so we define $\operatorname{Sign}(\alpha) = \begin{cases} +1 & \text{if } \theta(0) = \theta(1) \\ -1 & \text{if } \theta(0) = -\Theta(1). \end{cases}$ Prop 9.11: $\alpha : [t_0, t_1] \rightarrow \mathbb{RP}^n$, $\theta_0 \in S^n$ s.t $\alpha(t_0) = p(\theta_0)$. Then 3! lift $\theta : [t_0, t_1] \rightarrow S^n$ for α with initial point $\theta(t_0) = \theta_0$.

Thm 9.12 (i) The function $\operatorname{Sign}:\pi_{1}(\operatorname{IR} \operatorname{IP}^{n}) \to \mathbb{Z}_{2}$; : $[\alpha] \mapsto \begin{cases} +1 \quad \Theta(0) = \Theta(1) \\ -1 \quad \Theta(0) = \Theta(-1) \end{cases}$ is a surjective homomorphism with $\operatorname{Sign}([\sigma]) = -1$ (ii) n=1, $\operatorname{Sign}:\pi_{1}(\operatorname{IR}\operatorname{IP}^{1}) = 7L \to \mathbb{Z}_{2}$; $N \mapsto \begin{cases} +1 \quad N \text{ odd} \\ -1 \quad N \text{ even} \end{cases}$ (iii) n=2, $\operatorname{Sign}:\pi_{1}(\operatorname{IR}\operatorname{IP}^{n}) \to 7L_{2}$; $N \mapsto \begin{cases} +1 \quad N \text{ odd} \\ -1 \quad N \text{ even} \end{cases}$ (iii) n=2, $\operatorname{Sign}:\pi_{1}(\operatorname{IR}\operatorname{IP}^{n}) \to 7L_{2}$; $N \mapsto \begin{cases} \pi_{1}(\operatorname{IR}\operatorname{IP}^{n}) \to \pi_{2} \\ -1 \quad N \text{ even} \end{cases}$ (iii) n=2, $\operatorname{Sign}:\pi_{1}(\operatorname{IR}\operatorname{IP}^{n}) \to 7L_{2}$; $n \mapsto [\sigma]$.

10. Fixed Points and Non-retraction

Dim 10.1 a fixed point of a map $f: X \rightarrow X$ is a point xeX such that f(x) = x.

Brouwer Fixed point Theorem : Every map $f: D^2 \rightarrow D^2$ has a fixed point, n>1.

Dfn 10.3: i:A · × inclusion of A ⊂ X. The subspace A is a retract of X if ∃ a map j: X → A s.t joi:A→A is the identity. The map j is a retraction of X onto A.

Prop 10.5: X path-connected, $i: A \rightarrow X$ inclusion of path connected subspace $A \subset X$. (i) If A is a retract of X, j: $X \rightarrow A$ a retraction, then the induced group homos $i_{i_{i}}:\pi_{i}(A) \rightarrow \pi_{i}(X)$, $j_{i_{i}}:\pi_{i}(X) \rightarrow \pi_{i}(A)$

are such that $j_* \circ i_* : \pi_1(A) \Rightarrow \pi_1(A)$ is the identity $\Rightarrow i_*$ injective, j_* surjective. (ii) If $\pi_1(A) \neq \{1\}$ and $\pi_1(X) = \{1\}$ then A not retract of X.

Prop 10.7: If $\exists f: D^n \rightarrow D^n$ without fixed points, then the inclusion $i: S^{n-1} \rightarrow D^n$ admits a retraction.

Thm 10.8 (non-retraction for n=1,2) (i) $S^0 \subset D^1$ is not a retract (ii) $S^1 \subset D^2$ is not a retract.

Cor 10.9 (BFPT, n = 1, 2) Every map $f: D^2 \rightarrow D^2$ has a fixed point.

Prop 10 · 11 : A map $f: S^n \rightarrow S^n$ without fixed points is homotopic to the antipodal map, $a: x \mapsto -x$.

homotopy: $S^n \times I \rightarrow S^n$; $(x,t) \mapsto \frac{(1-t)f(x)-tx}{\|(1-t)f(x)-tx\|}$

```
Prop 10.3:(1) a map f: S' → S' without fixed points
has degree 1
(11) a map f: S'→ S' with degree ≠1 has a fixed point.
```

Rem: antipodal map has degree 1.

Recall... discrete: every subset is open.

11. Covering Spaces

General idea: compute $\pi_1(X, x_0)$ for a path - connected space X using the universal covering projection $p: \tilde{X} \rightarrow X$ with \tilde{X} simply connected (path - connected and $\pi_1(\tilde{X}) = 0$), such that each $p^{-1}(x) \subset \tilde{X}$ is a copy of $\pi_1(\tilde{X}, x_0)$ as a discrete subspace.

Dfn 11.1: A covering space of a space X with fibre the discrete space F is a space \tilde{X} with a covering projection map $p: \tilde{X} \rightarrow X$ such that for each $x \in X$, 3 an open $U \subseteq X$, $x \in U$, and a homeomorphism $Q: F X U \rightarrow p^{-1}(U)$

Such that $p\phi(a,u) = u \in U \subseteq X$. In particular, for each $x \in X$, $p^{-1}(x)$ is homeomorphic to F.

Dfn 11.2: Given a covering projection $p:\tilde{X} \rightarrow X$, let Homeo $p(\tilde{X}) \leq$ Homeo (\tilde{X}) Consisting of homeos $h:\tilde{X} \rightarrow \tilde{X}$ such that $ph = p : \tilde{X} \rightarrow X$ i.e. such that the diagram (ommutes: $\tilde{X} \xrightarrow{h} \tilde{X}$

Such h are called Covering translations.

Dfn 11.4: A covering projection $p: \tilde{X} \rightarrow X$ with fibre F is *trivial* if $\exists a$ homeomorphism $\phi: F \times X \rightarrow \tilde{X}$ Such that $p\phi(a,x) = x \in X$

EX 11.5: F discrete, then $p: \tilde{X} := F \times X \rightarrow X$; $(a, x) \mapsto x$ is trivial, with identity trivialization.

Ex 11.6(ii) If p is trivial and $\phi_1, \phi_2: F \times X \rightarrow \tilde{X}$ are two trivializations, then $\exists! \quad \sigma: X \rightarrow Homeo(F)$ such that $\phi_2(a,x) = \phi_1(\sigma(x)(a), x) \in \tilde{X}$

(iii) If p is trivial and ϕ is a trivialization, a Covering translation h: $\tilde{X} \rightarrow \tilde{X}$ is then of the form

 $h: \tilde{X} \to \tilde{X} ; \phi(a_1 x) \mapsto \phi(\sigma(x)(a), x)$ $\frac{X \text{ path conn}}{2} \sigma(x) \text{ constant}, \Rightarrow \text{Homeo}_{p}(\tilde{X}) = \text{Homeo}(F)$

Rem: h: X→X is a homeomorphism iff h is a covering projection with fibre F= ₹1}.

Thm 11.8: Given a space \tilde{X} , and a $G \in Homeo(\tilde{X})$, define \sim on \tilde{X} : $\tilde{\lambda}_1 \sim \tilde{\lambda}_2 \iff \exists g \in G \text{ s.t.} \tilde{\lambda}_2 = g(\tilde{\lambda}_1)$, $\chi := \tilde{\chi}/\sim = \tilde{\chi}/G$, quotient p: $\tilde{\chi} \rightarrow \chi$. Suppose that for each $\tilde{\chi} \in \tilde{\chi}$, \exists open $U \subseteq \tilde{\chi}$, $\tilde{\chi} \in U$, such that $g(U) \cap U = \phi \quad \forall g \in G \setminus \Xi I \tilde{S}$. Then p: $\tilde{\chi} \rightarrow \chi$ is a covering projection with fibre G. $\tilde{\chi}$ path-conn $\Rightarrow \chi$ path-conn, and Homeop($\hat{\chi}$) = G \subset Homeo($\tilde{\chi}$). Dfn 11.10. $p: \tilde{X} \to X$ a covering projection. A lift of a map $f: Y \to X$ is a map $\tilde{f}: Y \to \tilde{X}$ such that $p(\tilde{f}(y)) = f(y)$ \tilde{f}

) = f(y)

So there is a commutative diagram :

Ex II. II: $p: \tilde{\chi} = Fxx \rightarrow X$, $f: V \rightarrow X$. let $a \in F$, and define $\tilde{f}_a: V \rightarrow \tilde{\chi} = Fxx$, $y \mapsto (a, f(y))$.

1 path connected \Rightarrow every lift of f is of this type.

Thm 11.12: (Path lifting property) let $p: \tilde{X} \to X$ be a covering projection, fibre F. Let $x \circ \in X$, $\tilde{x} \circ \in \tilde{X}$ s.t $p(\Re_0) = x \circ$. (i) $\forall \alpha: I \to X$, $\alpha(o) = x \circ$, $\exists !$ lift $\tilde{\alpha}: I \to \tilde{X}$ s.t $\tilde{\alpha}(o) = \tilde{x} \circ$. (ii) $\alpha, \beta: I \to X$, $\alpha(o) = \beta(o) = x \circ$, $\alpha(1) = \beta(1) \in X$. Then every rel $\exists 0, 1$ homotopy $h: \alpha = \beta: I \to \tilde{X}$ has a unique lift to a rel $\exists 0, 1$ homotopy $\tilde{h}: \tilde{\alpha} = \tilde{\beta}: I \to \tilde{X}$ and in particular, $\tilde{\alpha}(1) = \tilde{h}(1, t) = \tilde{\beta}(1) \in \tilde{X}$.

```
Dfn 11.13: p: \tilde{X} \rightarrow X, \alpha : I \rightarrow X, the fibre transport bijection

\alpha_{\#} : p^{-1}(\alpha(0)) \rightarrow p^{-1}(\alpha(1)); \tilde{X} \mapsto \tilde{\alpha}_{\tilde{X}}(1),
```

where α_R:I→X is the unique lift of a given by Thm 11.12 with α_R(o)=: x

Prop 11.15: every covering projection $p: \tilde{X} \rightarrow X$ of a Simply - Connected space is trivial.

Dfn 11.17: p: x̃→x, X path-conn, is *universal* if x̃ is simply-conn.

Thm 11.19: χ path - conn, locally path - conn space with Universal p: $\tilde{\chi} \rightarrow \chi$. Let $\pi_0 \in \chi$, $\tilde{\pi}_0 \in \tilde{\chi}$ s.t $p(\tilde{\pi}_0) = \chi_0$. (i) function $\pi_1(\chi_1 \chi_0) \rightarrow p^{-1}(\chi_0)$; $[\alpha] \rightarrow \alpha_{\#}(\pi_0)$ is a bijection (ii) $\forall [\alpha] \in \pi_1(\chi, \chi_0)$, $\exists!$ covering trans hat $\in Homeo_p(\tilde{\chi})$ s.t $h_{\alpha}(\tilde{\pi}_0) = \alpha_{\#}(\tilde{\pi}_0)$ The function $\pi_1(\chi_1 \chi_0) \rightarrow Homeo_p(\tilde{\chi})$; $[\alpha] \mapsto h_{\alpha}$ is an isomorphism of groups.